Способы получения металлов при высокой температуре. Способы получения металлов. Получение переходных металлов

Основные способы получения металлов

Урок в 11 классе


Способы получения металлов

обычно разделяют на три типа:

пирометаллургические - восстановление при высоких температурах;

гидрометаллургические - восстановление из солей в растворах;

электрометаллургические - электролиз раствора или расплава.


Пирометал-лургически

получают : чугун, сталь, медь, свинец, никель, хром и другие металлы.

Доменный процесс –

получение стали и чугуна


Гидрометаллургически получают : золото, цинк, никель и некоторые другие металлы.

Получаемые металлы: Cd, Ag, Au, Cu, Zn, Mo и др.


Электрометал-лургически получают : щелочные и щёлочноземель-ные металлы, алюминий, магний и другие металлы.


1. Восстановление металлов из оксидов углем или угарным газом

Например,

x O y + C = CO 2 + Me,

1. ZnO y + C t = CO + Zn

x O y + C = CO + Me,

2. Fe 3 O 4 + 4CO t = 4CO 2 + 3Fe

3. MgO + C t = Mg + CO

x O y + CO = CO 2 + Me

Не подходит для металлов, образующих карбиды с углём.

получают: Fe, Cu, Pb, Sn, Cd, Zn


Общие способы получения металлов

2. Обжиг сульфидов с последующим восстановлением (если металл находится в руде в виде соли или основания, то последние предварительно переводят в оксид)

Например,

1 стадия

x S y +O 2 = Mе x O y +SO 2

1. 2ZnS + 3O 2 t = 2ZnO + 2SO 2

2 стадия

x O y + C = CO 2 + Me или

2. MgCO 3 t = MgO + CO 2

x O y + CO = CO 2 + Me


Общие способы получения металлов

3 Алюмотермия (в тех случаях, когда нельзя восстановить углём или угарным газом из-за образования карбида или гидрида )

Например,

1. 4SrO + 2Al t = Sr(AlO 2 ) 2 + 3Sr

x O y + Al = Al 2 O 3 + Me

получают: Mn, Cr, Ti, Mo, W, V и др

2. 3MnO 2 + 4Al t = 3Mn + 2Al 2 O 3

3. 2Al + 3BaO t = 3Ba + Al 2 O 3 (получают барий высокой чистоты)


Общие способы получения металлов

4. Водородотермия - для получения металлов особой чистоты

Например,

1. WO 3 + 3H 2 t = W + 3H 2 O

x O y + H 2 = H 2 O + Me

2. MoO 3 + 3H 2 t = Mo + 3H 2 O

Получают металлы большей чистоты: Cu, Ni, W, Fe, Mo, Cd, Pb


А) Щелочные и щелочноземельные металлы получают в промышленности электролизом расплавов солей (хлоридов):

2NaCl расплав, электр. ток. 2 Na + Cl 2

CaCl 2 расплав, электр. ток. Ca + Cl 2

расплавов гидроксидов :

4NaOH расплав, электр. ток. 4Na + O 2 + 2H 2 O

(!!! используют изредка для Na)


Восстановление металлов электрическим током (электролиз)

Б) Алюминий в промышленности получают в результате электролиза расплава оксида алюминия в криолите Na 3 AlF 6 (из бокситов):

2Al 2 O 3 расплав в криолите, электр. ток. 4Al + 3 O 2

В) Электролиз водных растворов солей используют для получения металлов средней активности и неактивных:

2CuSO 4 +2H 2 O раствор, электр. ток. 2Cu + O 2 + 2H 2 SO 4


Металл, который получают

Способ получения

Щелочные металлы, Ca, Sr

Fe в виде сплавов

Для получения металлов средней активности и неактивных:


Примеры заданий по теме : «Общие способы получение металлов»

Задания с выбором ответа (А10, А24, А29).

А1. Реакция возможна между

1) Ag и K 2 SO 4 (р-р)

2) Zn и KCl (р-р)

3) Mg и SnCl 2 (р-р)

4) Ag и CuSO 4 (р-р)

А2. Какой из металлов вытесняет железо из сульфата железа (II)?

1) Cu 2) Zn 3) Sn 4) Hg


A3. Какой из металлов вытесняет медь из сульфата меди (II)?

1) Zn 2) Ag 3) Hg 4) Au

A4. Формула вещества, восстанавливающего оксид меди (II) - это

1) CO 2 2) H 2 3) HNO 3 4) Cl 2

A5. Формула вещества, не восстанавливающего оксид железа (III) -

1) HCl 2) Al 3) H 2 4) C


А6. Для осуществления превращений в соответствии со схемой:

Al(OH) 3 → AlCl 3 → Al необходимо последовательно использовать

1) хлор и водород

2) хлорид натрия и водород

3) хлороводород и цинк

4) соляную кислоту и калий

А7. Пирометаллургический метод получения металлов отражает реакция:

1) HgS + O 2 → Hg + SO 2

2) CuSO 4 + Fe → FeSO 4 + Cu

3) 2NaCl (ток)→ 2Na + Cl 2

4) CuSO 4 + Zn → ZnSO 4 + Cu


А8. Гидрометаллургический метод получения металлов отражает реакция:

1) HgS + O 2 → Hg + SO 2

2) CuSO 4 + Fe → FeSO 4 + Cu

3) 2NaCl (ток)→ 2Na + Cl 2

4) AlCl 3 + 3K → Al + 3KCl

А9. В качестве восстановителя при выплавке железа в промышленности

наиболее часто используют

1) водород

2) алюминий


А10. Оксид углерода (II) проявляет восстановительные свойства при нагревании с

1) N 2 2) H 2 S 3) Fe 4) Fe 2 O 3

Задания с кратким ответом (В3)

В1. При электролизе раствора AgNO 3 на катоде выделяется

1) серебро

2) водород

3) серебро и водород

4) кислород и водород


В2. Установите соответствие между формулой вещества и продуктом электролиза его водного раствора

ВОДНОГО РАСТВОРА

А) AgF 1) Ag, F 2

Б) NaNO 3 2) Ag, O 2 , HF

B) Pb(NO 3) 2 3) H 2 , O 2

Г) NaF 4) Pb, O 2 , HNO 3

5) H 2 , NO 2 , O 2

6) NaOH, H 2 , F 2


В3. Установите соответствие между формулой вещества и продуктом электролиза его водного раствора

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА ВОДНОГО РАСТВОРА ВОДНОГО РАСТВОРА

А) HgCl 2 1) металл, хлор

Б) AlCl 3 2) водород, хлор, гидроксид

В) Hg(ClO 4) 2 металла

Г) Na 2 SO 3 3) водород, кислород

4) металл, кислород, кислота

5) металл, сернистый газ

6) водород, сернистый газ


В4. Установите соответствие между формулой вещества и продуктом электролиза его водного раствора

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

ВОДНОГО РАСТВОРА

А) нитрат цинка 1) цинк, кислород, азотная кислота

Б) бромид цинка 2) водород, кислород

В) бромид калия 3) водород, оксид азота (IV)

Г) нитрат калия 4) цинк, бром

5) водород, бром, гидроксид калия

6) калий, бром

7) калий, оксид азота (IV)


В5. Установите соответствие между формулой вещества и продуктом электролиза его водного раствора, образующимся на като-де

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

ВОДНОГО РАСТВОРА

А) Li 2 SO 4 1) H 2

Б) Ba(OH) 2 2) O 2

В) MgCl 2 3) Cl 2

Г) SnCl 2 4) Li


В6. Верны ли следующие суждения о промышленных способах получения металлов?

А. В основе пирометаллургии лежит процесс восстановления металлов из руд при высоких температурах.

Б. В промышленности в качестве восстановителей используют оксид углерода (II) и кокс.

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны


В7. Установите соответствие между металлом и способом его

электролитического получения.

МЕТАЛЛ ЭЛЕКТРОЛИЗ

А) натрий 1) водного раствора солей

В) серебро 3) расплава поваренной соли

Г) медь 4) расплавленного оксида

5) раствора оксида в расплав-

ленном криолите

6) расплавленного нитрата


В8. Установите соответствие между металлом и способом его электролитического получения.

МЕТАЛЛ ЭЛЕКТРОЛИЗ

А) калий 1) расплавленного нитрата

Б) магний 2) водного раствора гидроксида

В) медь 3) расплава хлорида

Г) свинец 4) расплавленного оксида

5) раствора оксида в расплавленном криолите

6) водного раствора солей


В9. Установите соответствие между металлом и способом его электролитического получения.

МЕТАЛЛ ЭЛЕКТРОЛИЗ

А) хром 1) водного раствора солей

Б) алюминий 2) водного раствора гидроксида

В) литий 3) расплава соли

Г) барий 4) расплавленного оксида

5) раствора оксида в расплав-

ленном криолите

6) расплавленного нитрата


Задания с развёрнутым ответом (С2)

С1. Напишите уравнения реакций, с помощью которых можно осуществить превращения:

Cu → Cu(NO 3) 2 → Cu(OH) 2 → Х → Сu → CuSO 4

Укажите условия протекания реакций.

C2. Даны вещества: алюминий, оксид марганца (IV), водный раствор сульфата меди и концентрированная соляная кислота.

Напишите уравнения четырёх возможных реакции между этими веществами.

В своей повседневной жизни окружен различными металлами. В большинстве предметов, которыми мы пользуемся, присутствуют эти химические вещества. Это все произошло потому, что люди нашли разнообразные способы получения металлов.

Что такое металлы

Этими ценными для людей веществами занимается неорганическая химия. Получение металлов позволяет человеку создавать все более совершенную технику, совершенствующую нашу жизнь. Что же они собой представляют? Прежде чем рассмотреть общие способы получения металлов, необходимо разобраться, какими они бывают. Металлы представляют собой группу химических элементов в виде простых веществ, обладающую характерными свойствами:

Тепло- и электропроводностью;

Высокой пластичностью;

Блеском.

Человек легко может отличить их от других веществ. Характерной чертой всех металлов является наличие особого блеска. Он получается благодаря отражению падающих лучей света на не пропускающую их поверхность. Блеск - это общее свойство всех металлов, но ярче всего оно проявляется у серебра.

На сегодняшний день учеными открыто 96 таких химических элементов, хотя еще не все из них признаны официальной наукой. Их разбивают на группы в зависимости от присущих им характерных свойств. Так выделяют следующие металлы:

Щелочные - 6;

Щелочноземельные - 6;

Переходные - 38;

Легкие - 11;

Полуметаллы - 7;

Лантаноиды - 14;

Актиноиды - 14.

Получение металлов

Для того чтобы изготовить сплав, необходимо в первую очередь получить металл из природной руды. Самородные элементы - это те вещества, которые находятся в природе в свободном состоянии. К ним относится платина, золото, олово, ртуть. Их отделяют от примесей механически или с помощью химических реагентов.

Остальные металлы добывают путем обработки их соединений. Они содержатся в различных ископаемых. Руда - это минералы и горные породы, в состав которых входят соединения металлов в виде оксидов, карбонатов или сульфидов. Для их получения используют химическую обработку.

Восстановление оксидов углем;

Получение олова из оловянного камня;

Обжигание сернистых соединений в специальных печах.

Для облегчения добывания металлов из рудных пород к ним добавляют различные вещества, называемые флюсами. Они помогают удалять нежелательные примеси, такие как глина, известняк, песок. В результате этого процесса получаются легкоплавкие соединения, называемые шлаками.

При наличии значительного количества примесей руду перед выплавкой металла обогащают путем удаления большой части ненужных компонентов. Наиболее широко применяемые способы данной обработки - флотация, магнитный и гравитационный способ.

Щелочные металлы

Массовое получение щелочных металлов - более сложный процесс. Это обусловлено тем, что они встречаются в природе только в виде химических соединений. Поскольку они являются восстановителями, их получение сопровождается высокими энергетическими затратами. Существует несколько способов добывания щелочных металлов:

Литий можно получить из его оксида в вакууме или путем электролиза расплава его хлорида, образующегося при переработке сподумена.

Натрий добывают путем прокаливания соды с углем в плотно закрытых тиглях или электролизом расплава хлорида с добавлением кальция. Первый способ наиболее трудоемкий.

Калий получают электролизом расплава его солей либо, пропуская пары натрия через его хлорид. Также он образуется при взаимодействии расплавленного гидроксида калия и жидкого натрия при температуре 440°С.

Цезий и рубидий добывают при помощи восстановления их хлоридов кальцием при 700-800 °С или цирконием при 650 °С. Получение щелочных металлов таким способом является крайне энергоемким и дорогостоящим.

Различия между металлами и сплавами

Принципиально четкой границы между металлами и их сплавами практически не существует, поскольку даже самые чистые, простые вещества имеют какую-то долю примесей. Так в чем же различие между ними? Практически все металлы, используемые в промышленности и в других отраслях народного хозяйства, используются в виде сплавов, полученных целенаправленно путем добавления к основному химическому элементу других компонентов.

Сплавы

Техника нуждается в разнообразных металлических материалах. При этом чистые химические элементы практически не применяются, поскольку они не обладают необходимыми для людей свойствами. Для своих нужд мы изобрели разные способы получения сплавов. Под этим термином подразумевается макроскопически однородный материал, который состоит из 2 или нескольких химических элементов. При этом в сплаве преобладают металлические компоненты. Это вещество имеет свою структуру. В сплавах различают следующие составляющие:

Основа, состоящая из одного или нескольких металлов;

Малые добавки модифицирующих и легирующих элементов;

Неудаленные примеси (технологические, природные, случайные).

Именно сплавы металлов являются основным конструкционным материалом. В технике их насчитывают более 5000.

Несмотря на такое многообразие сплавов, наибольшее значение для людей играют те, основу которых составляет железо и алюминий. Именно они чаще всего встречаются в повседневной жизни. Виды сплавов бывают различными. Причем их разделяют по нескольким критериям. Так применяются различные способы изготовления сплавов. По данному критерию их делят на:

Литые, которые получены путем кристаллизации расплава смешанных компонентов.

Порошковые, созданные при помощи прессования смеси порошков и последующего спекания при высокой температуре. Причем зачастую компонентами таких сплавов являются не только простые химические элементы, но и их различные соединения, такие как карбиды титана или вольфрама в твердых сплавах. Их добавление в тех или иных количествах изменяет материалов.

Способы получения сплавов в виде готового изделия или заготовки разделяют на:

Литейные (силумин, чугун);

Деформируемые (стали);

Порошковые (титан, вольфрам).

Типы сплавов

Способы получения металлов бывают разными, при этом и изготовленные благодаря им материалы обладают различными свойствами. В твердом агрегатном состоянии сплавы бывают:

Гомогенными (однородными), состоящими из кристаллов одного типа. Их часто называют однофазными.

Гетерогенными (неоднородными), именуемые многофазными. При их получении в качестве основы сплава берется твердый раствор (матричная фаза). Состав гетерогенных веществ такого типа зависит от состава его химических элементов. В таких сплавах могут быть следующие компоненты: твердые растворы внедрения и замещения, химические соединения (карбиды, интерметаллиды, нитриды), кристаллиты простых веществ.

Свойства сплавов

Вне зависимости от того, какие способы получения металлов и сплавов используются, их свойства полностью определяются кристаллической структурой фаз и микроструктурой этих материалов. У каждого из них они разные. Макроскопические свойства сплавов зависят от их микроструктуры. Они в любых случаях отличаются от характеристик их фаз, зависящих исключительно от кристаллической структуры материала. Макроскопическая однородность гетерогенных (многофазных) сплавов получается в результате равномерного распределения фаз в матрице металла.

Важнейшим свойством сплавов считается свариваемость. В остальном они идентичны металлам. Так, сплавы обладают тепло- и электропроводностью, пластичностью и отражательной способностью (блеском).

Разновидности сплавов

Различные способы получения сплавов позволили человеку изобрести большое количество металлических материалов, обладающих различными свойствами и характеристиками. По своему назначению они делятся на такие группы:

Конструкционные (сталь, дюралюминий, чугун). К данной группе относятся и сплавы со специальными свойствами. Так они отличаются искробезопасностью или антифрикционными свойствами. К ним относятся латуни и бронзы.

Для заливки подшипников (баббит).

Для электронагревательной и измерительной аппаратуры (нихром, манганин).

Для производства режущих инструментов (победит).

В производстве люди используют и другие виды металлических материалов, таких как легкоплавкие, жаропрочные, коррозионностойкие и аморфные сплавы. Также широкое применение находят магниты и термоэлектрики (телуриды и селениды висмута, свинца, сурьмы и другие).

Железные сплавы

Практически все выплавляемое на Земле железо направляется на производство простых и Также оно используется в производстве чугуна. Сплавы железа получили свою популярность благодаря тому, что обладают полезными для человека свойствами. Они были получены в результате добавления к простому химическому элементу различных компонентов. Так, несмотря на то, что различные сплавы железа изготавливаются на основе одного вещества, стали и чугуны обладают различными свойствами. Благодаря этому они находят разные сферы применения. Большинство сталей тверже чугуна. Различные методы получения этих металлов позволяют получать разные сорта (марки) этих сплавов железа.

Улучшение свойств сплавов

Благодаря сплавлению некоторых металлов и других химических элементов можно получить материалы с улучшенными характеристиками. Так, например, чистого алюминия составляет 35 МПа. При получении сплава этого металла с медью (1,6%), цинком (5,6%), магнием (2,5%) этот показатель превышает 500 МПа.

Благодаря соединению в разных соотношениях различных химических веществ можно получить металлические материалы с улучшенными магнитными, термическими или электрическими свойствами. Главную роль в этом процессе играет структура сплава, представляющая собой распределение его кристаллов и тип связей между атомами.

Стали и чугуны

Эти сплавы получаются путем и углерода (2%). При производстве легированных материалов к ним добавляются никель, хром, ванадий. Все обычные стали подразделяют на виды:

Малоуглеродистая (0,25 % углерода) используется для изготовления различных конструкций;

Высокоуглеродистая (более 0,55%) предназначена для производства режущих инструментов.

Различные марки легированных сталей применяются в машиностроении и другой продукции.

Сплав железа с углеродом, процентное содержание которого составляет 2-4%, называется чугуном. В состав этого материала входит и кремний. Из чугуна отливают различные изделия, обладающие хорошими механическими свойствами.

Цветные металлы

Помимо железа, для изготовления различных металлических материалов используются и другие химические элементы. В результате их соединения получают цветные сплавы. В жизни людей наибольшее применение нашли материалы на основе:

Меди, называемые латунями. Они содержат 5-45% цинка. Если его содержание составляет 5-20%, то латунь называется красной, а если 20-36%- желтой. Существуют сплавы меди с кремнием, оловом, бериллием, алюминием. Они называются бронзами. Имеется несколько видов таких сплавов.

Свинца, представляющие собой обычный припой (третник). В этом сплаве на 1 часть данного химического вещества припадает 2 части олова. При производстве подшипников применяется баббит, который являет собой сплав свинца, олова, мышьяка и сурьмы.

Алюминия, титана, магния и бериллия, представляющие собой легкие цветные сплавы, обладающие высокой прочностью и отличными механическими свойствами.

Способы получения

Основные способы получения металлов и сплавов:

Литейный, при котором происходит затвердевание разных расплавленных компонентов. Для получения сплавов используют пирометаллургический и электрометаллургический методы получения металлов. При первом варианте для разогрева сырья используют тепловую энергию, полученную в процессе сгорания топлива. Пирометаллургическим методом получают стали в мартеновских печах и чугуны в домнах. При электрометаллургическом способе сырье нагревают в индукционных или дуговых электрических печах. При этом сырье расславляется очень быстро.

Порошковый, при котором для изготовления сплава используются порошки его компонентов. Благодаря прессованию им придают определенную форму, а затем спекают в специальных печах.

В природе химические элементы металлы могут находиться как в свободном виде (в виде простого вещества), так и в связанном (входить в состав сложных веществ). В связи с этим различаются спосбобы и методы получения металло, рассмотрим основные из них.

Химически малоактивные металлы, стоящие в ряду напряжений после водорода (например, медь, ртуть, золото, серебро, платина) встречаются на Земле и в свободном, и в связанном виде. Металлы, стоящие в ряду напряжений до водорода в природных условиях, как правило, содержатся в связанном виде. Содержащиеся в природе соединения металлов называются иначе минералами.

Скопление металлсодержащих минералов, входящих в состав горных и осадочных пород, пригодные для промышленной переработки называются рудами .

Если металл в природных условиях находится в свободном виде, то его получение сводится лишь к разделению его с пустой породой. При этом используются известные физические методы разделения смесей.

В соединениях металлы находятся в окисленном виде и поэтому для выделения их из руд необходимо использовать процессы восстановления. Извлечением металлов из руд занимается металлургическая промышленность или металлургия. При этом в зависимости от применяемого способа восстановления металлов из соединений различают пирометаллургию, гидрометаллургию и электрометаллургию.

Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высокой температуре.

Сырьем для получения металлов главным образом служат руды, содержащие их оксиды. В качестве восстановителя применяют уголь или СО (карботермия ), активные металлы (металлотермия ), H 2 (водородотермия ) и Si (кремнийтермия ).

ZnO + C = Zn + CO

Fe 2 O 3 + 3CO = 2Fe + 3CO 2

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

Ca + 2CsCl = CaCl 2 + 2Cs

TiCl 4 + 2Mg = Ti + 2MgCl 2

MoO 3 + 3H 2 = Mo + 3H 2 O

WO 3 + 3H 2 = W + 3H 2 O

Углерод, применяемый в виде кокса, при соответствующих высоких температурах может восстановить практически любой металл, даже такой активный, как щелочной, щелочноземельный, магний или алюминий. Однако на практике эти металлы методом карботермии не получают, так как они с избытком углерода образуют прочные химические соединения – карбиды.

С помощью карботермии обычно получают такие металлы, как Fe, Cu, Zn, Co, Ni, Mn, Cr. Карбиды этих металлов непрочны, при нагревании легко разлагаются.

Углерод(II)-оксид как восстановитель более эффективен, чем кокс, поскольку находится в газообразном состоянии и способен обеспечивать большую площадь соприкосновения реагирующих веществ.

С помощью водородотермии получаютследующин металлы - молибден, вольфрам, рений. Достоинством этого метода является то, что при этом образуются металлы высокой чистоты.

В металлотермии одним из наиболее активных восстановителей является алюминий, что объясняется высокой энтальпией образования его оксида

Н(Al 2 O 3) = –1700 кДж/моль. Алюминий применяют для получения таких металлов, как хром, железо, кобальт, никель.

Его можно использовать даже для получения щелочных и щелочноземельных металлов, так как энтальпии образования их оксидов значительно ниже Н(Al 2 O 3). Но, как правило, эти металлы получают другими способами, так как их оксиды с Al 2 O 3 легко образуют алюминаты:

3CaO + 2Al = Al 2 O 3 +3Ca

CaO + Al 2 O 3 = Ca(AlO 2) 2

суммарное уравнение

4 CaO + 2Al = Ca(AlO 2) 2 + 3Ca

Если в руде находится сульфид металла, то его переводят в оксид путем окислительного обжига:

2ZnS + 3O 2 = 2ZnO + 2SO 2

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

Карбонатные руды с этой же целью также предварительно подвергают прокаливанию:

ZnCO 3 = ZnO + CO 2

FeCO 3 = FeO + CO 2

Гидрометаллургия охватывает способы получения металлов из растворов их солей. При этом соединение металла, входящее в состав руды или исходного сырья, сначала переводят в раствор с помощью подходящих реагентов, а затем данный металл извлекают из этого раствора химическим путем.

Так, например, при обработке разбавленной серной кислотой медной руды, содержащей медь(II)-оксид, медь переходит в раствор в виде сульфата:

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Затем медь извлекают из раствора вытеснением с помощью порошка железа:

CuSO 4 + Fe = Cu + FeSO 4

Аналогичным методом получают Au, Ag, Zn, Cd, Mo и другие металлы.

4Au + O 2 + 8NaCN + 2H 2 O = 4Na + 4NaOH

2Na + Zn = Na 2 + 2Au

Электрометаллургия охватывает способы получения металлов путем электролиза растворов или расплавов их соединений:

2Al 2 O 3 = 4Al + 3O 2

2NaCl = 2Na + Cl 2

2KCl = 2K + Cl 2

Таким способом получают наиболее активные металлы, которые при восстановлении водородом, углем, алюминием образуют с этими веществами химические соединения.

Электролизом растворов солей получают малоактивные металлы, которые стоят в ряду напряжений после водорода:

СuCl 2 = Cu + Cl 2

Электролиз растворов используют для получения малоактивных металлов высокой степени чистоты.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества
  • Решение расчетных задач на основе количественных характеристик вещества и стехиометрических законов
  • Решение расчетных задач на основе законов газового состояния вещества
  • Электронная конфигурация атомов. Строение электронных оболочек атомов первых трех периодов

Металлургия — это комплексная отрасль промышленности, которая занимается производством металлов.

Поскольку большинство металлов в природе существует в виде различных соединений, то химическая суть металлургических процессов заключается в восстановлении металлов:

Me +n + nē → Me 0

В зависимости от того, какой используется восстановитель и каковы условия, при которых проводят процессы восстановления различают пиро-, гидро-, электро- и биометаллургию.

Пирометаллургия (от греч. огонь и металлургия) представляет собой все химические способы восстановления металлов из руд, осуществляемые с применением высоких температур.

В качестве восстановителей в пирометаллургии используют уголь (кокс), оксид углерода (II), водород, активные металлы, кремний.

Оксидные руды чаще всего восстанавливают коксом или оксидом углерода (II) — этот процесс носит название карботермия:

Для извлечения металлов пирометаллургическим способом из сульфидных руд их сначала подвергают предварительному отжигу:

А затем, полученный оксид восстанавливают коксом:

Тугоплавкие металлы, например, молибден и вольфрам, восстанавливают водородом:

Если восстановителями химически активные металлы, то этот пирометаллургический способ называют металлотермия. В зависимости от природы металла-восстановителя различают алюминотермию, или алюмотермию, — восстановление алюминием и магнийтермию — восстановление магнием. Способ металлотермии позволяет восстанавливать металлы не только из оксидов, но и с галогенидов:

Известен способ восстановления металлов кремнием, называемый силикотермией:

Гидрометаллургия представляет собой метод получения металлов, заклющийся в преобразовании природных соединений металлов в растворимую форму с последующим восстановлением металла из раствора. О возможности применения гидрометаллургических процессов для извлечения металлов еще в 1763 г.. Говорил М. В. Ломоносов. Гидрометаллургического способами добывают благородные (золото, серебро, платину), цветные (медь, никель, цинк, кобальт), редкие (цирконий, гафний, тантал) и другие металлы:

NiSO 4 + Zn = Ni + ZnSO 4

К преимуществам данного способа относится возможность его использования для получения металлов при их малом содержании в руде, которую невозможно перерабатывать обычными способами; снижение во многих случаях загрязнения окружающей среды, например, при обжиге сульфидных руд.

Электрометаллургия — это способ получения металлов с применением электрического тока — электролиза . Электролизом расплавов получают самые активные металлы (от лития до марганца в ряду активности), электролизом водных растворов — менее активные (Zn, Cu, Ni, Cr и т.д.).

Биометалургия основана на биохимических процессах, протекающих при использовании микроорганизмов. Известно, что микроорганизмы типа литотрофы (с лат. – «поедающие камни») могут преобразовывать нерастворимые сульфиды металлов в растворимые сульфаты. Сейчас с применением микроорганизмов добывают медь (в США данный метод достигает 10% от общего ее производства), уран, рений, серебро, никель, свинец, а также некоторые редкие металлы.

Большинство металлов находятся в природе в виде соединений с другими элементами, и только немногие встречаются в чистом виде, например: серебро, золото, медь, свинец. Минералы (природные химические соединения) и горные породы, содержащие соединения металлов называются рудами . Руды содержат оксиды, сульфиды, карбонаты, галогениды металлов. Получение металлов из руд составляет задачу металлургии.

Металлургические процессы,протекающие при высоких температурах, называются пирметаллургическими. Таким путем получают чугун и сталь, используя вещества-восстановители.

Важнейшими восстановителями являются углерод и монооксид углерода. Для металлов, не восстанавливаемых ни углеродом, ни СО, используют более сильные восстановители: водород, кремний и некоторые достаточно активные металлы – магний, алюминий. Методы, в которых в качестве восстановителей используют металлы, называются металлотермией (иногда в названии присутствует металл-восстановитель, например: алюмотермия).

Примеры процессов c использованием различных восстановителей.

Fe 2 O 3 + 3CO = 3Fe + 3CO 2

Иногда, при переработке сульфидных руд, проводят первоначальный обжиг в специальных печах – окисляют руду до оксидов, и только затем восстанавливают до металла:

2ZnS + O 2 = 2ZnO + 2SO 2 ZnO + C = Zn + CO

Такие металлы, как хром, марганец, получают, главным образом, алюмотермией, а также восстановлением кремнием:

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

Процесс алюмотермии протекает с большим выделением теплоты.

Процессы извлечения металлов из руд с помощью водных растворов называются гидрометаллургическими. Таким путем получают золото. Золотосодержащую породу обрабатывают раствором NaCN, и золото переходит в раствор в виде комплекса - . Затем используют цинк в качестве восстановителя:

2 - + Zn = 2- + Au

Третьим способом получения металлов является электролиз растворов или расплавов. Электролизом раствора оксида алюминия в расплавленном криолите получают алюминий; электролизом расплава MgCl 2 получают магний.

Получение металлов высокой чистоты.

В ряде отраслей техники требуется получение металлов высокой степени чистоты. Например, для ядерных реакторов нужен химически чистый цирконий без примеси гафния. Для электронной промышленности необходим германий, в котором не должно быть более одного атома фосфора, мышьяка или сурьмы на миллион атомов германия. Исследование металлов в чистом состоянии показало, что некогда существовавшие представления об их свойствах являются ошибочными. Так, например, чистые титан, хром оказались настолько пластичными, что их можно ковать, прокатывать в тонкие листы и пр. Алюминий высокой чистоты мягок, как свинец, а его электропроводимость значительно выше.

Чистые металлы можно получить электролизом, но степень их чистоты недостаточно высокая, поэтому для получения металлов ОСЧ – особой чистоты, используют специальные методы:

Переплавка в вакууме (получают ОСЧ литий, щелочно-земельные металлы, хром, марганец, бериллий);

Разложение летучих соединений на раскаленной поверхности (получают ОСЧ титан, цирконий, хром, тантал, ниобий, кремний и др.);

Использование так называемой «зонной плавки» (получают германий, кремний, олово, алюминий, висмут и галлий).

Зонная плавка основана на различной растворимости примесей в твердой и жидкой фазах очищаемого металла. Лодочку или тигель специальной формы со слитком металла передвигают с очень медленной скоростью (несколько мм в час) через печь При этом происходит расплавление небольшого участка (зоны) металла. По мере продвижения тигля зона жидкого металла перемещается от одного конца слитка к другому. Примеси, содержащиеся в металле, собираются в зоне плавления, перемещаются вместе с ней и после окончания плавки оказываются в конце слитка. Многократное повторение операции дает возможность получить металл высокой степени чистоты.

Дополнения к теме «Физико-хмический анализ»

Многочисленные работы Ник. Семен. Курнакова по выяснению природы металлических сплавов внесли ясность в понимание процессов, происходящих при затвердевании сплавов. В частности, при изучении сплавов были открыты химические соединения, состав которых может меняться в широких пределах. Эти соединения, состав которых может меняться в широких пределах, Курнаков назвал бертоллидами, по имени французского химика Бертолле, допустившего их существование. Тогда как соединения постоянного состава (подчиняющиеся закону постоянства состава), были названы дальтониды. Стехиометрическое соотношение компонентов, образующих химическое соединение постоянного состава соблюдается только в парообразном состоянии, в молекулярных кристаллах и жидкостях. Исходя из вышесказанного, можно дать более развернутое определение, что такое химическое соединение. Химическое соединение – это вещество постоянного или переменного состава, образованное из атомов одного или нескольких химических элементов, с качественно своеобразным химическим и кристаллохимическим строением.

При сплавлении металлов может образоваться твердый раствор или химическое соединение переменного состава. В отличие от твердых растворов (общее между растворами и хим. соединениями – однородность и наличие теплового эффекта при образовании), соединение переменного состава характеризуется только ему присущим кристаллохимическим строением, отличающимся от строения исходных компонентов.

Условием образования

Поделиться: